

The only way to learn mathematics is to do mathematics.

- Paul Halmos -

SET THEORY

I hear and I forget.
I see and I remember.
I do and I understand.

— Confucious —

OPERATIONS ON SETS

Definition

Let A and B be subsets of a universal set U.

- The union of A and B, denoted A ∪ B, is the set of all elements that are in at least one of A or B.
- 2. The intersection of A and B, denoted $A \cap B$, is the set of all elements that are common to both A and B.
- 3. The difference of B minus A (or relative complement of A in B), denoted B A, is the set of all elements that are in B and not A.
- The complement of A, denoted A^c, is the set of all elements in U that are not in A.

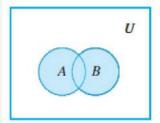
Symbolically: $A \cup B = \{x \in U \mid x \in A \text{ or } x \in B\},\$

 $A \cap B = \{x \in U \mid x \in A \text{ and } x \in B\},\$

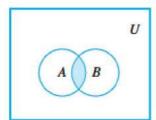
 $B - A = \{x \in U \mid x \in B \text{ and } x \notin A\},\$

 $A^c = \{x \in U \mid x \notin A\}.$

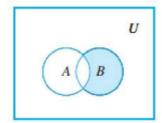
Venn diagram representations for union, intersection, difference, and complement are shown in Figure 6.1.4.



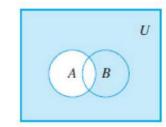
Shaded region represents $A \cup B$.



Shaded region represents $A \cap B$.



Shaded region represents B-A.



Shaded region represents Ac.

Figure 6.1.4

OPERATIONS ON SETS

Definition: Given sets A and B, the symmetric difference of A and B, denoted $A \triangle B$, is

$$A \triangle B = (A - B) \cup (B - A).$$

- 46. Let $A = \{1, 2, 3, 4\}, B = \{3, 4, 5, 6\}, \text{ and } C = \{5, 6, 7, 8\}.$ Find each of the following sets:
 - a. $A \wedge B$
- b. $B \wedge C$
- c. $A \triangle C$ d. $(A \triangle B) \triangle C$

Unions, Intersections, Differences, and Complements

Let the universal set be the set $U = \{a, b, c, d, e, f, g\}$ and let $A = \{a, c, e, g\}$ and $B = \{d, e, f, g\}$. Find $A \cup B$, $A \cap B$, B - A, and A^c .

Solution

$$A \cup B = \{a, c, d, e, f, g\}$$
 $A \cap B = \{e, g\}$

$$B - A = \{d, f\}$$
 $A^c = \{b, d, f\}$

10. Let $A = \{1, 3, 5, 7, 9\}$, $B = \{3, 6, 9\}$, and $C = \{2, 4, 6, 8\}$. Find each of the following:

- a. $A \cup B$
- b. $A \cap B$ c. $A \cup C$
- d. $A \cap C$

- e. A-B f. B-A g. $B\cup C$ h. $B\cap C$

INTERVALS

Notation

Given real numbers a and b with $a \le b$:

$$(a, b) = \{x \in \mathbf{R} \mid a < x < b\}$$

$$(a, b) = \{x \in \mathbf{R} \mid a < x < b\}$$
 $[a, b] = \{x \in \mathbf{R} \mid a \le x \le b\}$

$$(a, b] = \{x \in \mathbf{R} \mid a < x \le b\}$$

$$[a, b] = \{x \in \mathbf{R} \mid a < x \le b\}$$
 $[a, b) = \{x \in \mathbf{R} \mid a \le x < b\}.$

The symbols ∞ and $-\infty$ are used to indicate intervals that are unbounded either on the right or on the left:

$$(a, \infty) = \{x \in \mathbf{R} \mid x > a\}$$

$$(a, \infty) = \{x \in \mathbf{R} \mid x > a\} \qquad [a, \infty) = \{x \in \mathbf{R} \mid x \ge a\}$$

$$(-\infty, b) = \{x \in \mathbf{R} \mid x < b\}$$

$$(-\infty, b) = \{x \in \mathbf{R} \mid x < b\}$$
 $[-\infty, b) = \{x \in \mathbf{R} \mid x \le b\}.$

An Example with Intervals

Let the universal set be the set R of all real numbers and let

$$A = (-1, 0] = \{x \in \mathbb{R} \mid -1 < x \le 0\} \text{ and } B = [0, 1) = \{x \in \mathbb{R} \mid 0 \le x < 1\}.$$

These sets are shown on the number lines below.

Find $A \cup B$, $A \cap B$, B - A, and A^c .

OPERATIONS ON SETS

Solution

$$A \cup B = \{x \in \mathbb{R} \mid x \in (-1, 0] \text{ or } x \in [0, 1)\} = \{x \in \mathbb{R} \mid x \in (-1, 1)\} = (-1, 1).$$

$$A \cap B = \{x \in \mathbb{R} \mid x \in (-1, 0] \text{ and } x \in [0, 1)\} = \{0\}.$$

$$B - A = \{x \in \mathbb{R} \mid x \in [0, 1) \text{ and } x \notin (-1, 0]\} = \{x \in \mathbb{R} \mid 0 < x < 1\} = (0, 1)$$

$$A^{c} = \{x \in \mathbb{R} \mid \text{it is not the case that } x \in (-1, 0]\}$$

$$= \{x \in \mathbb{R} \mid \text{it is not the case that } (-1 < x \text{ and } x \le 0)\}$$
by definition of the double inequality

$$= \{x \in \mathbf{R} \mid \text{it is not the case that } (-1 < x \text{ and } x \le 0)\}$$
 double inequality
$$= \{x \in \mathbf{R} \mid x \le -1 \text{ or } x > 0\} = (-\infty, -1] \cup (0, \infty)$$
 by De Morgan's law

11. Let the universal set be the set R of all real numbers and let

 $A = \{x \in \mathbb{R} \mid 0 < x \le 2\}, B = \{x \in \mathbb{R} \mid 1 \le x < 4\}, \text{ and }$

 $C = \{x \in \mathbb{R} \mid 3 \le x < 9\}$. Find each of the following:

- a. $A \cup B$
- b. $A \cap B$ c. A^c
- d. $A \cup C$

- e. $A \cap C$ f. B^c
- g. $A^c \cap B^c$

- h. $A^c \cup B^c$ i. $(A \cap B)^c$ j. $(A \cup B)^c$

OPERATIONS ON SETS

- 12. Let the universal set be the set R of all real numbers and let $A = \{x \in \mathbb{R} \mid -3 \le x \le 0\}, B = \{x \in \mathbb{R} \mid -1 < x < 2\},\$ and $C = \{x \in \mathbb{R} \mid 6 < x \le 8\}$. Find each of the following:
 - a. $A \cup B$ b. $A \cap B$ c. A^c
- d. $A \cup C$

- e. $A \cap C$ f. B^c g. $A^c \cap B^c$
- h. $A^c \cup B^c$ i. $(A \cap B)^c$ j. $(A \cup B)^c$

13. Indicate which of the following relationships are true and which are false:

a.
$$\mathbf{Z}^+ \subseteq \mathbf{Q}$$

b.
$$\mathbf{R}^- \subseteq \mathbf{Q}$$

c.
$$Q \subseteq Z$$

$$\mathbf{d.} \ \mathbf{Z}^- \cup \mathbf{Z}^+ = \mathbf{Z}$$

e.
$$\mathbf{Z}^- \cap \mathbf{Z}^+ = \emptyset$$
 f. $\mathbf{Q} \cap \mathbf{R} = \mathbf{Q}$

f.
$$\mathbf{Q} \cap \mathbf{R} = \mathbf{Q}$$

g.
$$\mathbf{Q} \cup \mathbf{Z} = \mathbf{Q}$$

g.
$$\mathbf{Q} \cup \mathbf{Z} = \mathbf{Q}$$
 h. $\mathbf{Z}^+ \cap \mathbf{R} = \mathbf{Z}^+$

i.
$$\mathbf{Z} \cup \mathbf{Q} = \mathbf{Z}$$

DISJOINT SETS

Definition

Two sets are called disjoint if, and only if, they have no elements in common. Symbolically:

A and B are disjoint \Leftrightarrow $A \cap B = \emptyset$.

Disjoint Sets

Let $A = \{1, 3, 5\}$ and $B = \{2, 4, 6\}$. Are A and B disjoint?

Solution Yes. By inspection A and B have no elements in common, or, in other words, $\{1, 3, 5\} \cap \{2, 4, 6\} = \emptyset.$

DISJOINT SETS

Definition

Sets $A_1, A_2, A_3...$ are mutually disjoint (or pairwise disjoint or nonoverlapping) if, and only if, no two sets A_i and A_j with distinct subscripts have any elements in common. More precisely, for all i, j = 1, 2, 3, ...

$$A_i \cap A_j = \emptyset$$
 whenever $i \neq j$.

Mutually Disjoint Sets

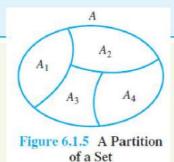
- a. Let $A_1 = \{3, 5\}$, $A_2 = \{1, 4, 6\}$, and $A_3 = \{2\}$. Are A_1, A_2 , and A_3 mutually disjoint?
- b. Let $B_1 = \{2, 4, 6\}$, $B_2 = \{3, 7\}$, and $B_3 = \{4, 5\}$. Are B_1, B_2 , and B_3 mutually disjoint?

PARTITION

Definition

A finite or infinite collection of nonempty sets $\{A_1, A_2, A_3 ...\}$ is a partition of a set A if, and only if,

- 1. A is the union of all the A_i
- 2. The sets A_1, A_2, A_3, \ldots are mutually disjoint.



(T. (2) | (1) | (2) | (3) | (3) | (3) | (3) | (3) | (3) | (3) | (3) | (3) | (3) | (3) | (3) | (3) | (3) | (3) |

PARTITION

Partitions of Sets

- a. Let $A = \{1, 2, 3, 4, 5, 6\}$, $A_1 = \{1, 2\}$, $A_2 = \{3, 4\}$, and $A_3 = \{5, 6\}$. Is $\{A_1, A_2, A_3\}$ a partition of A?
- b. Let Z be the set of all integers and let

$$T_0 = \{n \in \mathbb{Z} \mid n = 3k, \text{ for some integer } k\},\$$

 $T_1 = \{n \in \mathbb{Z} \mid n = 3k + 1, \text{ for some integer } k\}, \text{ and }$
 $T_2 = \{n \in \mathbb{Z} \mid n = 3k + 2, \text{ for some integer } k\}.$

Is $\{T_0, T_1, T_2\}$ a partition of **Z**?

PARTITION

- 27. **a.** Is $\{\{a, d, e\}, \{b, c\}, \{d, f\}\}\$ a partition of $\{a, b, c, d, e, f\}$?
 - b. Is $\{\{w, x, v\}, \{u, y, q\}, \{p, z\}\}\$ a partition of $\{p, q, u, v, w, x, y, z\}$?
 - c. Is {{5, 4}, {7, 2}, {1, 3, 4}, {6, 8}} a partition of {1, 2, 3, 4, 5, 6, 7, 8}?
 - **d.** Is {{3, 7, 8}, {2, 9}, {1, 4, 5}} a partition of {1, 2, 3, 4, 5, 6, 7, 8, 9}?
 - e. Is {{1, 5}, {4, 7}, {2, 8, 6, 3}} a partition of {1, 2, 3, 4, 5, 6, 7, 8}?

POWER SETS

Definition

Given a set A, the power set of A, denoted $\mathcal{P}(A)$, is the set of all subsets of A.

Power Set of a Set

Find the power set of the set $\{x, y\}$. That is, find $\mathcal{P}(\{x, y\})$.

$$\mathcal{P}(\{x, y\}) = \{\emptyset, \{x\}, \{y\}, \{x, y\}\}.$$

POWER SETS

- **31.** Suppose $A = \{1, 2\}$ and $B = \{2, 3\}$. Find each of the following:
 - a. $\mathscr{P}(A \cap B)$
- $b.\mathscr{P}(A)$
- c. $\mathscr{P}(A \cup B)$ d. $\mathscr{P}(A \times B)$
- 33. a. Find $\mathcal{P}(\emptyset)$.
- **b.** Find $\mathscr{P}(\mathscr{P}(\emptyset))$.
- c. Find $\mathscr{P}(\mathscr{P}(\mathscr{P}(\emptyset)))$.

PROPERTIES OF SETS

Theorem 6.2.1 Some Subset Relations

- 1. *Inclusion of Intersection:* For all sets A and B,
 - (a) $A \cap B \subseteq A$ and (b) $A \cap B \subseteq B$.
- 2. Inclusion in Union: For all sets A and B,

(a)
$$A \subseteq A \cup B$$
 and (b) $B \subseteq A \cup B$.

3. Transitive Property of Subsets: For all sets A, B, and C,

if
$$A \subseteq B$$
 and $B \subseteq C$, then $A \subseteq C$.

PROPERTIES OF SETS

Theorem 6.2.2 Set Identities

Let all sets referred to below be subsets of a universal set U.

1. Commutative Laws: For all sets A and B,

(a)
$$A \cup B = B \cup A$$
 and (b) $A \cap B = B \cap A$.

2. Associative Laws: For all sets A, B, and C,

(a)
$$(A \cup B) \cup C = A \cup (B \cup C)$$
 and

(b)
$$(A \cap B) \cap C = A \cap (B \cap C)$$
.

3. Distributive Laws: For all sets, A, B, and C,

(a)
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
 and

(b)
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
.

4. Identity Laws: For all sets A,

(a)
$$A \cup \emptyset = A$$
 and (b) $A \cap U = A$.

5. Complement Laws:

(a)
$$A \cup A^c = U$$
 and (b) $A \cap A^c = \emptyset$.

PROPERTIES OF SETS

6. Double Complement Law: For all sets A,

$$(A^c)^c = A.$$

7. Idempotent Laws: For all sets A,

(a)
$$A \cup A = A$$
 and (b) $A \cap A = A$.

8. Universal Bound Laws: For all sets A,

(a)
$$A \cup U = U$$
 and (b) $A \cap \emptyset = \emptyset$.

9. De Morgan's Laws: For all sets A and B,

(a)
$$(A \cup B)^c = A^c \cap B^c$$
 and (b) $(A \cap B)^c = A^c \cup B^c$.

10. Absorption Laws: For all sets A and B,

(a)
$$A \cup (A \cap B) = A$$
 and (b) $A \cap (A \cup B) = A$.

11. Complements of U and Ø:

(a)
$$U^c = \emptyset$$
 and (b) $\emptyset^c = U$.

12. Set Difference Law: For all sets A and B,

$$A - B = A \cap B^c$$
.

